Energies (Jun 2021)

Voltage Regulation For Residential Prosumers Using a Set of Scalable Power Storage

  • Igor Cavalcante Torres,
  • Daniel M. Farias,
  • Andre L. L. Aquino,
  • Chigueru Tiba

DOI
https://doi.org/10.3390/en14113288
Journal volume & issue
Vol. 14, no. 11
p. 3288

Abstract

Read online

Among the electrical problems observed from the solar irradiation variability, the electrical energy quality and the energetic dispatch guarantee stand out. The great revolution in batteries technologies has fostered its usage with the installation of photovoltaic system (PVS). This work presents a proposition for voltage regulation for residential prosumers using a set of scalable power batteries in passive mode, operating as a consumer device. The mitigation strategy makes decisions acting directly on the demand, for a storage bank, and the power of the storage element is selected in consequence of the results obtained from the power flow calculation step combined with the prediction of the solar radiation calculated by a recurrent neural network Long Short-Term Memory (LSTM) type. The results from the solar radiation predictions are used as subsidies to estimate, the state of the power grid, solving the power flow and evidencing the values of the electrical voltages 1-min enabling the entry of the storage device. In this stage, the OpenDSS (Open distribution system simulator) software is used, to perform the complete modeling of the power grid where the study will be developed, as well as simulating the effect of the overvoltages mitigation system. The clear sky day stored 9111 Wh/day of electricity to mitigate overvoltages at the supply point; when compared to other days, the clear sky day needed to store less electricity. On days of high variability, the energy stored to regulate overvoltages was 84% more compared to a clear day. In order to maintain a constant state of charge (SoC), it is necessary that the capacity of the battery bank be increased to meet the condition of maximum accumulated energy. Regarding the total loading of the storage system, the days of low variability consumed approximately 12% of the available capacity of the battery, considering the SoC of 70% of the capacity of each power level.

Keywords