Tropical Medicine and Infectious Disease (Jun 2024)

Rapid Discriminative Identification of the Two Predominant Echinococcus Species from Canine Fecal Samples in the Tibetan Region of China by Loop-Mediated Isothermal Amplification–Lateral Flow Dipstick Assay

  • Xinyue Lv,
  • Jiajia Ai,
  • Xiaojin Mo,
  • Haojie Ding,
  • Sofia Litchev,
  • Entung Lu,
  • Youhong Weng,
  • Qing He,
  • Quzhen Gongsang,
  • Shijie Yang,
  • Xiumin Ma,
  • Jingzhong Li,
  • Huasheng Pang,
  • Shaohong Lu,
  • Qingming Kong

DOI
https://doi.org/10.3390/tropicalmed9060136
Journal volume & issue
Vol. 9, no. 6
p. 136

Abstract

Read online

Echinococcosis poses a significant concern in the fields of public health and veterinary care as it can be transmitted between animals and humans. The primary endemic subtypes are cystic echinococcosis (CE) and alveolar echinococcosis (AE), which result from infestation by Echinococcus granulosus and Echinococcus multilocularis, respectively. A prominent epidemic of echinococcosis greatly affects the Tibet Autonomous Region (TAR) in China. A new technique called the loop-mediated isothermal amplification–lateral flow dipstick (LAMP-LFD) test is introduced in this research to differentiate between E. granulosus and E. multilocularis using their repetitive genetic sequences. The test is characterized by its portable nature, simple operation, quick result production, high sensitivity, and low susceptibility to aerosol contamination. The LAMP-LFD method demonstrated an exceptional minimal detection limit, reaching levels as low as approximately 1 fg/μL (femtogram per microliter) of genomic DNA. The assay’s specificity was assessed, and no cross-reactivity was seen. A total of 982 dog fecal samples were collected from 54 counties in the TAR region between July 2021 and June 2022. The established method underwent validation using a commercially available ELISA kit. The agreement rate between the LAMP-LFD and ELISA methods was 97.25%, with a sensitivity of 96.05% and a specificity of 97.35%. The assay described in this study improves specificity by using a double-labeled probe, and it reduces the risk of false-positive results caused by aerosol contamination through the use of a sealed device. This makes it a suitable choice for quickly and accurately identifying the two main types of Echinococcus in field settings.

Keywords