Electrical engineering & Electromechanics (Jun 2024)

Influence of permanent magnet parameters on the performances of claw pole machines used in hybrid vehicles

  • A. Kimouche,
  • M. R. Mekideche,
  • M. Chebout,
  • H. Allag

DOI
https://doi.org/10.20998/2074-272X.2024.4.01
Journal volume & issue
Vol. 2024, no. 4
pp. 3 – 8

Abstract

Read online

Introduction. Claw pole machines (CPM) are commonly used in the automotive industry. Recently, importance has focused on the use and introduction of permanent magnets (PM) in this type of machine to increase the power density. This paper studies the performance of permanent magnet claw pole machines (PM-CPM) used in hybrid electric vehicle applications. The structure considers that the PMs are placed between the claws of the rotor. Purpose. The influence of the PM magnetization effect on the performance of synchronous PM-CPM is analyzed. Radial and tangential magnetizations are applied to obtain the best possible sinusoidal shape of the electromotive force and an acceptable cogging torque. Then, the electromagnetic performance of the PM-CPM is analyzed and evaluated. Furthermore, due to the complexity of the rotor armature, it seems difficult to give a direct relationship between the PM parameters and the machine torque. This led us to study the effects of magnets geometrical dimensions variations on the torque and its ripple. Method. 3D nonlinear model of the machine is analyzed using the finite element method and comparisons between some electromagnetic performances are processed. Results. It was found that the tangential magnetization of PMs makes it possible to obtain a better distribution of the flux density and a minimum of cogging torque mainly responsible for vibrations and acoustic noise. Also, we observed a non-linear variation between the torque and its ripples depending on the dimensions of the PM. In fact, electromagnetic torque increases linearly with PM size but this is not the case for torque ripples. References 22, tables 2, figures 16.

Keywords