PLoS ONE (Jan 2018)

Epigallocatechin-3-gallate confers protection against corticosterone-induced neuron injuries via restoring extracellular signal-regulated kinase 1/2 and phosphatidylinositol-3 kinase/protein kinase B signaling pathways.

  • Xiaoling Zhao,
  • Renjia Li,
  • Hui Jin,
  • Haimin Jin,
  • Yonghui Wang,
  • Wanqi Zhang,
  • Haichao Wang,
  • Weiqiang Chen

DOI
https://doi.org/10.1371/journal.pone.0192083
Journal volume & issue
Vol. 13, no. 1
p. e0192083

Abstract

Read online

Extensive studies suggested epigallocatechin-3-gallate (EGCG) has significant neuroprotection against multiple central neural injuries, but the underlying mechanisms still remain poorly elucidated. Here we provide evidence to support the possible involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol-3 kinase/ protein kinase B (PI3K/AKT) pathways in EGCG-mediated protection against corticosterone-induced neuron injuries. As an essential stress hormone, corticosterone could induce obvious neurotoxicity in primary hippocampal neurons. Pre-treatment with EGCG ameliorated the corticosterone-induced neuronal injuries; however, it was blocked by pharmacological inhibitors for ERK1/2 (U0126) and PI3K/AKT (LY294002). Furthermore, the results confirmed that EGCG restored the corticosterone-induced decrease of ERK1/2 and PI3K/AKT phosphorylation, and attenuated the corticosterone-induced reduction of peroxisome proliferators-activated receptor-γ coactivator-1α (PGC-1α) expression and ATP production. Taken together, these findings indicated that EGCG has significant neuroprotection against corticosterone-induced neuron injuries partly via restoring the ERK1/2 and PI3K/AKT signaling pathways as well as the PGC-1α-mediated ATP production.