International Journal of Molecular Sciences (Jun 2022)

IKKγ/NEMO Localization into Multivesicular Bodies

  • Lisa-Marie Wackernagel,
  • Mohsen Abdi Sarabi,
  • Sönke Weinert,
  • Werner Zuschratter,
  • Karin Richter,
  • Klaus Dieter Fischer,
  • Ruediger C. Braun-Dullaeus,
  • Senad Medunjanin

DOI
https://doi.org/10.3390/ijms23126778
Journal volume & issue
Vol. 23, no. 12
p. 6778

Abstract

Read online

The NF-κB pathway is central pathway for inflammatory and immune responses, and IKKγ/NEMO is essential for NF-κB activation. In a previous report, we identified the role of glycogen synthase kinase-3β (GSK-3β) in NF-κB activation by regulating IKKγ/NEMO. Here, we show that NEMO phosphorylation by GSK-3β leads to NEMO localization into multivesicular bodies (MVBs). Using the endosome marker Rab5, we observed localization into endosomes. Using siRNA, we identified the AAA-ATPase Vps4A, which is involved in recycling the ESCRT machinery by facilitating its dissociation from endosomal membranes, which is necessary for NEMO stability and NF-κB activation. Co-immunoprecipitation studies of NEMO and mutated NEMO demonstrated its direct interaction with Vps4A, which requires NEMO phosphorylation. The transfection of cells by a mutated and constitutively active form of Vps4A, Vps4A-E233Q, resulted in the formation of large vacuoles and strong augmentation in NEMO expression compared to GFP-Vps4-WT. In addition, the overexpression of the mutated form of Vps4A led to increased NF-κB activation. The treatment of cells with the pharmacologic V-ATPase inhibitor bafilomycin A led to a dramatic downregulation of NEMO and, in this way, inhibited NF-κB signal transduction. These results reveal an unexpected role for GSK-3β and V-ATPase in NF-κB signaling activation.

Keywords