InfoMat (Feb 2024)

Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications

  • Zhouping Yin,
  • Dazhi Wang,
  • Yunlong Guo,
  • Zhiyuan Zhao,
  • Liqiang Li,
  • Wei Chen,
  • Yongqing Duan

DOI
https://doi.org/10.1002/inf2.12505
Journal volume & issue
Vol. 6, no. 2
pp. n/a – n/a

Abstract

Read online

Abstract Electrohydrodynamic (EHD) printing technique, which deposits micro/nanostructures through high electric force, has recently attracted significant research interest owing to their fascinating characteristics in high resolution (<1 μm), wide material applicability (ink viscosity 1–10 000 cps), tunable printing modes (electrospray, electrospinning, and EHD jet printing), and compatibility with flexible/wearable applications. Since the laboratory level of the EHD printed electronics' resolution and efficiency is gradually approaching the commercial application level, an urgent need for developing EHD technique from laboratory into industrialization have been put forward. Herein, we first discuss the EHD printing technique, including the ink design, droplet formation, and key technologies for promoting printing efficiency/accuracy. Then we summarize the recent progress of EHD printing in fabrication of displays, organic field‐effect transistors (OFETs), transparent electrodes, and sensors and actuators. Finally, a brief summary and the outlook for future research effort are presented.

Keywords