Human Resources for Health (Apr 2022)

Using modeling and scenario analysis to support evidence-based health workforce strategic planning in Malawi

  • Leslie Berman,
  • Margaret L. Prust,
  • Agnes Maungena Mononga,
  • Patrick Boko,
  • Macfarlane Magombo,
  • Mihereteab Teshome,
  • Levison Nkhoma,
  • Grace Namaganda,
  • Duff Msukwa,
  • Andrews Gunda

DOI
https://doi.org/10.1186/s12960-022-00730-3
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background A well-trained and equitably distributed workforce is critical to a functioning health system. As workforce interventions are costly and time-intensive, investing appropriately in strengthening the health workforce requires an evidence-based approach to target efforts to increase the number of health workers, deploy health workers where they are most needed, and optimize the use of existing health workers. This paper describes the Malawi Ministry of Health (MoH) and collaborators’ data-driven approach to designing strategies in the Human Resources for Health Strategic Plan (HRH SP) 2018–2022. Methods Three modelling exercises were completed using available data in Malawi. Staff data from districts, central hospitals, and headquarters, and enrollment data from all health training institutions were collected between October 2017 and February 2018. A vacancy analysis was conducted to compare current staffing levels against established posts (the targeted number of positions to be filled, by cadre and work location). A training pipeline model was developed to project the future available workforce, and a demand-based Workforce Optimization Model was used to estimate optimal staffing to meet current levels of service utilization. Results As of 2017, 55% of established posts were filled, with an average of 1.49 health professional staff per 1000 population, and with substantial variation in the number of staff per population by district. With current levels of health worker training, Malawi is projected to meet its establishment targets in 2030 but will not meet the WHO standard of 4.45 health workers per 1000 population by 2040. A combined intervention reducing attrition, increasing absorption, and doubling training enrollments would allow the establishment to be met by 2023 and the WHO target to be met by 2036. The Workforce Optimization Model shows a gap of 7374 health workers to optimally deliver services at current utilization rates, with the largest gaps among nursing and midwifery officers and pharmacists. Conclusions Given the time and significant financial investment required to train and deploy health workers, evidence needs to be carefully considered in designing a national HRH SP. The results of these analyses directly informed Malawi’s HRH SP 2018–2022 and have subsequently been used in numerous planning processes and investment cases in Malawi. This paper provides a practical methodology for evidence-based HRH strategic planning and highlights the importance of strengthening HRH data systems for improved workforce decision-making.

Keywords