Journal of Taibah University for Science (Jan 2021)
Study of electric conduction mechanisms, dielectric relaxation behaviour and density of states in zinc sulphide nanoparticles
Abstract
Zinc Sulfide (ZnS) nanoparticles were synthesized by solid-state reaction method at 190°C. Dielectric, electrical properties, and conduction mechanism of ZnS nanoparticles were investigated. Average crystallite size and interplanar spacing of ZnS nanoparticles were approximately 4.47 nm and 1.92 Å respectively. The nanoparticles were spherical with size range of 10–20 nm. Complex impedance spectroscopy (CIS) of ZnS nanoparticles was performed at 20 Hz to 2 MHz and 236–320 K. The ZnS nanoparticles have negative temperature coefficient of resistance (NTCR). The AC measurements of ZnS nanoparticles from 236 K to 320 K revealed that the conduction in ZnS nanoparticles is due to correlated barrier hopping (CBH). The density of states (DOS) of ZnS nanoparticles have been calculated by CBH model as a function of temperature using photon frequency (fo) 1013 Hz and localized wave function (α) 1010 m−1 which ratified hopping as dominant conduction mechanism in ZnS nanoparticles.
Keywords