Diversity (Feb 2023)
Survival of Nematode Larvae <i>Strongyloides papillosus</i> and <i>Haemonchus contortus</i> under the Influence of Various Groups of Organic Compounds
Abstract
Many chemically synthesized xenobiotics can significantly inhibit the vitality of parasitic nematodes. However, there is yet too little research on the toxicity of such contaminating compounds toward nematodes. Compounds that are present in plants are able to inhibit the vitality of parasitic organisms as well. According to the results of our laboratory studies of toxicity, the following xenobiotics caused no decrease in the vitality of the larvae of Strongyloides papillosus and Haemonchus contortus: methanol, propan-2-ol, propylene glycol-1,2, octadecanol-1, 4-methyl-2-pen-tanol, 2-ethoxyethanol, butyl glycol, 2-pentanone, cyclopentanol, ortho-dimethylbenzene, dibutyl phthalate, succinic anhydride, 2-methylfuran, 2-methyl-5-nitroimidazole. Strong toxicity towards the nematode larvae was exerted by glutaraldehyde, 1,4-diethyl 2-methyl-3-oxobutanedioate, hexylamine, diethyl malonate, allyl acetoacetate, tert butyl carboxylic acid, butyl acrylate, 3-methyl-2-butanone, isobutyraldehyde, methyl acetoacetate, ethyl acetoacetate, ethyl pyruvate, 3-methylbutanal, cyclohexanol, cyclooctanone, phenol, pyrocatechin, resorcinol, naphthol-2, phenyl ether, piperonyl alcohol, 3-furoic acid, maleic anhydrid, 5-methylfurfural, thioacetic acid, butan-1-amine, dimethylformamide, 1-phenylethan-1-amine, 3-aminobenzoic acid. Widespread natural compounds (phytol, 3-hydroxy-2-butanone, maleic acid, oleic acid, hydroquinone, gallic acid-1-hydrate, taurine, 6-aminocaproic acid, glutamic acid, carnitine, ornithine monohydrochloride) had no negative effect on the larvae of S. papillosus and H. contortus. A powerful decrease in the vitality of nematode larvae was produced by 3,7-dimethyl-6-octenoic acid, isovaleric acid, glycolic acid, 2-oxopentanedioic acid, 2-methylbutanoic acid, anisole, 4-hydroxy-3-methoxybenzyl alcohol, furfuryl alcohol. The results of our studies allow us to consider 28 of the 62 compounds we studied as promising for further research on anti-nematode activity in manufacturing conditions.
Keywords