Sultan Qaboos University Journal for Science (Jun 2004)
On Regression Estimators Using Extreme Ranked Set Samples
Abstract
Regression is used to estimate the population mean of the response variable, , in the two cases where the population mean of the concomitant (auxiliary) variable, , is known and where it is unknown. In the latter case, a double sampling method is used to estimate the population mean of the concomitant variable. We invesitagate the performance of the two methods using extreme ranked set sampling (ERSS), as discussed by Samawi et al. (1996). Theoretical and Monte Carlo evaluation results as well as an illustration using actual data are presented. The results show that if the underlying joint distribution of and is symmetric, then using ERSS to obtain regression estimates is more efficient than using ranked set sampling (RSS) or simple random sampling (SRS).
Keywords