npj Quantum Information (Apr 2021)

Reprogrammable and high-precision holographic optical addressing of trapped ions for scalable quantum control

  • Chung-You Shih,
  • Sainath Motlakunta,
  • Nikhil Kotibhaskar,
  • Manas Sajjan,
  • Roland Hablützel,
  • Rajibul Islam

DOI
https://doi.org/10.1038/s41534-021-00396-0
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 8

Abstract

Read online

Abstract High-precision, individually programmable manipulation of quantum particles is crucial for scaling up quantum information processing (QIP) systems such as laser-cooled trapped-ions. However, restricting undesirable “crosstalk” in optical manipulation of ion qubits is fundamentally challenging due to micron-level inter-ion separation. Further, inhomogeneous ion spacing and high susceptibility to aberrations at UV wavelengths suitable for most ion-species pose severe challenges. Here, we demonstrate high-precision individual addressing (λ = 369.5 nm) of Yb+ using a reprogrammable Fourier hologram. The precision is achieved through in-situ aberration characterization via the trapped ion, and compensating (to λ/20) with the hologram. Using an iterative Fourier transformation algorithm (IFTA), we demonstrate an ultra-low (<10−4) intensity crosstalk error in creating arbitrary pair-wise addressing profiles, suitable for over fifty ions. This scheme relies on standard commercial hardware, can be readily extended to over a hundred ions, and adapted to other ion-species and quantum platforms.