Agronomy (Feb 2020)

Biochar and Vermicompost Amendments Affect Substrate Properties and Plant Growth of Basil and Tomato

  • Lan Huang,
  • Mengmeng Gu,
  • Ping Yu,
  • Chunling Zhou,
  • Xiuli Liu

DOI
https://doi.org/10.3390/agronomy10020224
Journal volume & issue
Vol. 10, no. 2
p. 224

Abstract

Read online

The suitability of biochar (BC) as a container substrate depends on the BC mix ratio and plant species. Mixes with mixed hardwood BC (20%, 40%, 60%, and 80%, by volume) and vermicompost (VC; 5%, 10%, 15%, and 20%, by volume) were evaluated as container substrates on basil (Ocimum basilicum L.) and tomato (Solanum lycopersicum L. ‘Roma’) plants compared to a commercial peat-based substrate (CS). The CS made up the rest of the volume when BC and VC did not add up to 100%. The total porosity of all mixes with BC, VC, and CS (BC:VC:CS mixes) was similar to the control. Mixes with 80% BC had lower container capacity than the control. At 9 weeks after transplanting, the leachate pH of all the BC:VC:CS mixes was higher than that of the control, except for mixes of 20%BC and 5%VC with the rest (75%) being CS (20BC:5VC:75CS) and 20BC:10VC:70CS with tomato plants. The soil plant analysis development (SPAD) readings in BC:VC:CS mixes were similar to or higher than the control except for tomato plants in 80BC:5VC:15CS, 80BC:15VC:5CS, and 80BC:20VC:0CS mixes. Plants in BC:VC:CS mixes had similar growth indexes and total dry weight with respect to those in 100% CS, with the root DW of basil plants in 60BC:15VC:25CS being the highest among all treatments. Therefore, the BC (20%, 40%, 60%, or 80%, by volume) and VC (5%, 10%, 15%, or 20%, by volume) mixes had the potential to replace CS for container-grown plants, with the estimate wholesale price for 80BC:5VC:15CS was only 61.6% that of the control.

Keywords