Physical Review Special Topics. Accelerators and Beams (May 2005)

Ion-stimulated gas desorption yields of electropolished, chemically etched, and coated (Au, Ag, Pd, TiZrV) stainless steel vacuum chambers and St707 getter strips irradiated with 4.2  MeV/u lead ions

  • E. Mahner,
  • J. Hansen,
  • D. Küchler,
  • M. Malabaila,
  • M. Taborelli

DOI
https://doi.org/10.1103/PhysRevSTAB.8.053201
Journal volume & issue
Vol. 8, no. 5
p. 053201

Abstract

Read online Read online

The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting under grazing incidence on different accelerator-type vacuum chambers. Desorption yields for H_{2}, CH_{4}, CO, and CO_{2}, which are of fundamental interest for future accelerator applications, are reported for different stainless steel surface treatments. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, palladium-, and getter-coated 316 LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analyzed for chemical composition by x-ray photoemission spectroscopy. The large effective desorption yield of 2×10^{4} molecules /Pb^{53+} ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble-metal coating by up to 2 orders of magnitude. In addition, pressure rise measurements, the effectiveness of beam scrubbing with lead ions, and the consequence of a subsequent venting on the desorption yields of a beam-scrubbed vacuum chamber are described. Practical consequences for the vacuum system of the future Low Energy Ion Ring are discussed.