Sensors (Mar 2020)

Analysis of Space Debris Orbit Prediction Using Angle and Laser Ranging Data from Two Tracking Sites under Limited Observation Environment

  • Simon Kim,
  • Hyung-Chul Lim,
  • James. C. Bennett,
  • Michael Lachut,
  • Jung Hyun Jo,
  • Jin Choi,
  • Mansoo Choi,
  • Eunseo Park,
  • Sung-Yeol Yu,
  • Ki-Pyoung Sung

DOI
https://doi.org/10.3390/s20071950
Journal volume & issue
Vol. 20, no. 7
p. 1950

Abstract

Read online

The global electro-optical (EO) and laser tracking sensor network was considered to investigate improvements to orbit prediction (OP) accuracy of space debris by combining angle and laser ranging data. However, it is worth noting that weather, schedule and visibility constraints can frequently limit the operations of such sensors, which may not result in sufficient tracking data for accurate OP. In this study, several 1-day OP results for low Earth orbit (LEO) space debris targets were demonstrated under a limited observation environment to verify the OP accuracy through the combination of angle and laser ranging data from two sites. For orbit determination (OD) processes, it was considered to analyze the OP accuracy by one site providing both 2–day arc angle data and 1-day arc laser ranging data, while the other was limited to 1-day arc angle data. In addition, the initial ballistic coefficient ( B C ) application method was proposed and implemented for the improvement of OD/OP accuracy, which introduces the modified correction factor depending on the drag coefficient. In the cases of combining the angle and laser ranging data, the OP results show the 3D position difference values are below 100 m root mean square (RMS) with small position uncertainty. This value satisfies the target OP accuracy for conjunction assessments and blind laser ranging (about 50–100 m at 1000 km altitude). The initial B C application method also shows better OP accuracy than the method without the correction factor.

Keywords