Applied Sciences (Feb 2024)

Segmenting Urban Scene Imagery in Real Time Using an Efficient UNet-like Transformer

  • Haiqing Xu,
  • Mingyang Yu,
  • Fangliang Zhou,
  • Hongling Yin

DOI
https://doi.org/10.3390/app14051986
Journal volume & issue
Vol. 14, no. 5
p. 1986

Abstract

Read online

Semantic segmentation of high-resolution remote sensing urban images is widely used in many fields, such as environmental protection, urban management, and sustainable development. For many years, convolutional neural networks (CNNs) have been a prevalent method in the field, but the convolution operations are deficient in modeling global information due to their local nature. In recent years, the Transformer-based methods have demonstrated their advantages in many domains due to the powerful ability to model global information, such as semantic segmentation, instance segmentation, and object detection. Despite the above advantages, Transformer-based architectures tend to incur significant computational costs, limiting the model’s real-time application potential. To address this problem, we propose a U-shaped network with Transformer as the decoder and CNN as the encoder to segment remote sensing urban scene images. For efficient segmentation, we design a window-based, multi-head, focused linear self-attention (WMFSA) mechanism and further propose the global–local information modeling module (GLIM), which can capture both global and local contexts through a dual-branch structure. Experimenting on four challenging datasets, we demonstrate that our model not only achieves a higher segmentation accuracy compared with other methods but also can obtain competitive speeds to enhance the model’s real-time application potential. Specifically, the mIoU of our method is 68.2% and 52.8% on the UAVid and LoveDA datasets, respectively, while the speed is 114 FPS, with a 1024 × 1024 input on a single 3090 GPU.

Keywords