Forum of Mathematics, Pi (Jan 2024)
The least singular value of a random symmetric matrix
Abstract
Let A be an $n \times n$ symmetric matrix with $(A_{i,j})_{i\leqslant j}$ independent and identically distributed according to a subgaussian distribution. We show that $$ \begin{align*}\mathbb{P}(\sigma_{\min}(A) \leqslant \varepsilon n^{-1/2} ) \leqslant C \varepsilon + e^{-cn},\end{align*} $$
Keywords