BMC Neuroscience (Dec 2012)

Functional α7β2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid β peptides

  • Liu Qiang,
  • Huang Yao,
  • Shen Jianxin,
  • Steffensen Scott,
  • Wu Jie

DOI
https://doi.org/10.1186/1471-2202-13-155
Journal volume & issue
Vol. 13, no. 1
p. 155

Abstract

Read online

Abstract Background β-amyloid (Aβ) accumulation is described as a hallmark of Alzheimer’s disease (AD). Aβ perturbs a number of synaptic components including nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are abundantly expressed in the hippocampus and found on GABAergic interneurons. We have previously demonstrated the existence of a novel, heteromeric α7β2-nAChR in basal forebrain cholinergic neurons that exhibits high sensitivity to acute Aβ exposure. To extend our previous work, we evaluated the expression and pharmacology of α7β2-nAChRs in hippocampal interneurons and their sensitivity to Aβ. Results GABAergic interneurons in the CA1 subregion of the hippocampus expressed functional α7β2-nAChRs, which were characterized by relatively slow whole-cell current kinetics, pharmacological sensitivity to dihydro-β-erythroidine (DHβE), a nAChR β2* subunit selective blocker, and α7 and β2 subunit interaction using immunoprecipitation assay. In addition, α7β2-nAChRs were sensitive to 1 nM oligomeric Aβ. Similar effects were observed in identified hippocampal interneurons prepared from GFP-GAD mice. Conclusion These findings suggest that Aβ modulation of cholinergic signaling in hippocampal GABAergic interneurons via α7β2-nAChRs could be an early and critical event in Aβ-induced functional abnormalities of hippocampal function, which may be relevant to learning and memory deficits in AD.

Keywords