Physical Review Research (Oct 2021)
Phase transitions in the frustrated Ising ladder with stoquastic and nonstoquastic catalysts
Abstract
The role of nonstoquasticity in the field of quantum annealing and adiabatic quantum computing is an actively debated topic. We study a strongly-frustrated quasi-one-dimensional quantum Ising model on a two-leg ladder to elucidate how a first-order phase transition with a topological origin is affected by interactions of the ±XX-type. Such interactions are sometimes known as stoquastic (negative sign) and nonstoquastic (positive sign) “catalysts”. Carrying out a symmetry-preserving real-space renormalization group analysis and extensive density-matrix renormalization group computations, we show that the phase diagrams obtained by these two methods are in qualitative agreement with each other and reveal that the first-order quantum phase transition of a topological nature remains stable against the introduction of both XX-type catalysts. This is the first study of the effects of nonstoquasticity on a first-order phase transition between topologically distinct phases. Our results indicate that nonstoquastic catalysts are generally insufficient for removing topological obstacles in quantum annealing and adiabatic quantum computing.