Frontiers in Microbiology (Feb 2020)

The Escherichia coli alkA Gene Is Activated to Alleviate Mutagenesis by an Oxidized Deoxynucleoside

  • Kristin Grøsvik,
  • Almaz Nigatu Tesfahun,
  • Izaskun Muruzábal-Lecumberri,
  • Gyri Teien Haugland,
  • Ingar Leiros,
  • Peter Ruoff,
  • Jan Terje Kvaløy,
  • Ingeborg Knævelsrud,
  • Hilde Ånensen,
  • Marina Alexeeva,
  • Kousuke Sato,
  • Akira Matsuda,
  • Ingrun Alseth,
  • Arne Klungland,
  • Arne Klungland,
  • Svein Bjelland

DOI
https://doi.org/10.3389/fmicb.2020.00263
Journal volume & issue
Vol. 11

Abstract

Read online

The cellular methyl donor S-adenosylmethionine (SAM) and other endo/exogenous agents methylate DNA bases non-enzymatically into products interfering with replication and transcription. An important product is 3-methyladenine (m3A), which in Escherichia coli is removed by m3A-DNA glycosylase I (Tag) and II (AlkA). The tag gene is constitutively expressed, while alkA is induced by sub-lethal concentrations of methylating agents. We previously found that AlkA exhibits activity for the reactive oxygen-induced thymine (T) lesion 5-formyluracil (fU) in vitro. Here, we provide evidence for AlkA involvement in the repair of oxidized bases by showing that the adenine (A) ⋅ T → guanine (G) ⋅ cytosine (C) mutation rate increased 10-fold in E. coli wild-type and alkA– cells exposed to 0.1 mM 5-formyl-2′-deoxyuridine (fdU) compared to a wild-type specific reduction of the mutation rate at 0.2 mM fdU, which correlated with alkA gene induction. G⋅C → A⋅T alleviation occurred without alkA induction (at 0.1 mM fdU), correlating with a much higher AlkA efficiency for fU opposite to G than for that to A. The common keto form of fU is the AlkA substrate. Mispairing with G by ionized fU is favored by its exclusion from the AlkA active site.

Keywords