Plants (May 2024)

Biostimulant Response of Foliar Application of Rare Earth Elements on Physiology, Growth, and Yield of Rice

  • Cynthia de Oliveira,
  • Silvio Junio Ramos,
  • Guilherme Soares Dinali,
  • Teotonio Soares de Carvalho,
  • Fábio Aurélio Dias Martins,
  • Valdemar Faquin,
  • Evaristo Mauro de Castro,
  • Jorge Eduardo Souza Sarkis,
  • José Oswaldo Siqueira,
  • Luiz Roberto Guimarães Guilherme

DOI
https://doi.org/10.3390/plants13111435
Journal volume & issue
Vol. 13, no. 11
p. 1435

Abstract

Read online

Rare earth elements (REEs) have been intentionally used in Chinese agriculture since the 1980s to improve crop yields. Around the world, REEs are also involuntarily applied to soils through phosphate fertilizers. These elements are known to alleviate damage in plants under abiotic stresses, yet there is no information on how these elements act in the physiology of plants. The REE mode of action falls within the scope of the hormesis effect, with low-dose stimulation and high-dose adverse reactions. This study aimed to verify how REEs affect rice plants’ physiology to test the threshold dose at which REEs could act as biostimulants in these plants. In experiment 1, 0.411 kg ha−1 (foliar application) of a mixture of REE (containing 41.38% Ce, 23.95% La, 13.58% Pr, and 4.32% Nd) was applied, as well as two products containing 41.38% Ce and 23.95% La separately. The characteristics of chlorophyll a fluorescence, gas exchanges, SPAD index, and biomass (pot conditions) were evaluated. For experiment 2, increasing rates of the REE mix (0, 0.1, 0.225, 0.5, and 1 kg ha−1) (field conditions) were used to study their effect on rice grain yield and nutrient concentration of rice leaves. Adding REEs to plants increased biomass production (23% with Ce, 31% with La, and 63% with REE Mix application) due to improved photosynthetic rate (8% with Ce, 15% with La, and 27% with REE mix), favored by the higher electronic flow (photosynthetic electron transport chain) (increase of 17%) and by the higher Fv/Fm (increase of 14%) and quantum yield of photosystem II (increase of 20% with Ce and La, and 29% with REE Mix), as well as by increased stomatal conductance (increase of 36%) and SPAD index (increase of 10% with Ce, 12% with La, and 15% with REE mix). Moreover, adding REEs potentiated the photosynthetic process by increasing rice leaves’ N, Mg, K, and Mn concentrations (24–46%). The dose for the higher rice grain yield (an increase of 113%) was estimated for the REE mix at 0.72 kg ha−1.

Keywords