Revista Española de Lingüística (Jul 2024)

Evaluación morfológica de los vocabularios de subpalabras utilizados por los grandes modelos de lenguaje

  • Óscar García Sierra,
  • Ana Fernández-Pampillón Cesteros,
  • Miguel Ortega-Martín

Journal volume & issue
Vol. 54, no. 1
pp. 103 – 130

Abstract

Read online

Con el auge de los grandes modelos del lenguaje neuronales, especialmente aquellos basados en Transformers, la tradicional segmentación en palabras y morfemas que empleaba reglas lingüísticas ha sido reemplazada por algoritmos de segmentación estadísticos. Estos algoritmos son mucho más eficientes y, sin necesidad de intervención humana, son capaces de, a partir de corpus de millones de palabras, construir el vocabulario de palabras y subpalabras que necesitan los grandes modelos del lenguaje monolingües o multilingües. Ocurre, sin embargo, que estas subpalabras no se corresponden siempre con morfemas y esto repercute negativamente en el funcionamiento de los modelos del lenguaje que utilizan estos segmentadores. Cuánto se alejan los vocabularios estadísticos de un vocabulario real de palabras y morfemas de una lengua –lo que denominamos calidad morfológica del vocabulario–, y cuánto repercute esta falta de calidad en la eficacia de los grandes modelos del lenguaje son cuestiones todavía sin resolver. Este artículo aborda la primera cuestión, la calidad morfológica de los vocabularios, aportando un método de evaluación basado en tres medidas de calidad –relevancia, coherencia y corrección morfológica–, y un procedimiento para evaluarlas. El método se aplica para medir la calidad de los vocabularios generados por tres algoritmos de segmentación en subpalabras, BPE, WordPiece y Unigram, utilizados mayoritariamente para la construcción de los grandes modelos del lenguaje. Los resultados que hemos obtenido indican que la calidad morfológica de los mismos es muy baja, por lo que merece la pena buscar nuevas soluciones para mejorar la calidad de los vocabularios de los grandes modelos del lenguaje.

Keywords