BMC Complementary Medicine and Therapies (Jun 2023)

Antioxidant evaluation and computational prediction of prospective drug-like compounds from polyphenolic-rich extract of Hibiscus cannabinus L. seed as antidiabetic and neuroprotective targets: assessment through in vitro and in silico studies

  • Olakunle Bamikole Afolabi,
  • Oluwaseun Ruth Olasehinde,
  • Damilola Grace Olanipon,
  • Samson Olatunde Mabayoje,
  • Olufemi Michael Familua,
  • Kikelomo Folake Jaiyesimi,
  • Esther Kemi Agboola,
  • Tolulope Olajumoke Idowu,
  • Olabisi Tajudeen Obafemi,
  • Oyindamola Adeniyi Olaoye,
  • Omotade Ibidun Oloyede

DOI
https://doi.org/10.1186/s12906-023-04023-7
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 24

Abstract

Read online

Abstract Background Reports have implicated diabetes mellitus (DM) and Alzheimer’s disease (AD) as some of the global persistent health challenges with no lasting solutions, despite of significant inputs of modern-day pharmaceutical firms. This study therefore, aimed to appraise the in vitro antioxidant potential, enzymes inhibitory activities, and as well carry out in silico study on bioactive compounds from polyphenolic-rich extract of Hibiscus cannabinus seed (PEHc). Methods In vitro antioxidant assays were performed on PEHc using standard methods while the identification of phytoconstituents was carried out with high performance liquid chromatography (HPLC). For the in silico molecular docking using Schrodinger’s Grid-based ligand docking with energetics software, seven target proteins were retrieved from the database ( https://www.rcsb.org/ ). Results HPLC technique identified twelve chemical compounds in PEHc, while antioxidant quantification revealed higher total phenolic contents (243.5 ± 0.71 mg GAE/g) than total flavonoid contents (54.06 ± 0.09 mg QE/g) with a significant (p < 0.05) inhibition of ABTS (IC50 = 218.30 ± 0.87 µg/ml) and 1, 1-diphenyl-2-picrylhydrazyl free radicals (IC50 = 227.79 ± 0.74 µg/ml). In a similar manner, the extract demonstrated a significant (p < 0.05) inhibitory activity against α-amylase (IC50 = 256.88 ± 6.15 µg/ml) and α-glucosidase (IC50 = 183.19 ± 0.23 µg/ml) as well as acetylcholinesterase (IC50 = 262.95 ± 1.47 µg/ml) and butyrylcholinesterase (IC50 = 189.97 ± 0.82 µg/ml), respectively. Furthermore, In silico study showed that hibiscetin (a lead) revealed a very strong binding affinity energies for DPP-4, (PDB ID: 1RWQ) and α-amylase (PDB ID: 1SMD), gamma-tocopherol ( for peptide-1 receptor; PDB ID: 3C59, AChE; PDB ID: 4EY7 and BChE; PDB ID: 7B04), cianidanol for α-glucosidase; PDB ID: 7KBJ and kaempferol for Poly [ADP-ribose] polymerase 1 (PARP-1); PDB ID: 6BHV, respectively. More so, ADMET scores revealed drug-like potentials of the lead compounds identified in PEHc. Conclusion As a result, the findings of this study point to potential drug-able compounds in PEHc that could be useful for the management of DM and AD.

Keywords