Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene
Ildem Akerman,
Miguel Angel Maestro,
Elisa De Franco,
Vanessa Grau,
Sarah Flanagan,
Javier García-Hurtado,
Gerhard Mittler,
Philippe Ravassard,
Lorenzo Piemonti,
Sian Ellard,
Andrew T. Hattersley,
Jorge Ferrer
Affiliations
Ildem Akerman
Institute of Metabolism and Systems Research (IMSR), Medical School, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham, UK; Corresponding author
Miguel Angel Maestro
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
Elisa De Franco
Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
Vanessa Grau
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
Sarah Flanagan
Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
Javier García-Hurtado
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
Gerhard Mittler
Max-Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
Philippe Ravassard
INSERM, CNRS, Paris Brain Institute - Hôpital Pitié-Salpêtrière, Paris, France
Lorenzo Piemonti
Diabetes Research Institute, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
Sian Ellard
Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
Andrew T. Hattersley
Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
Jorge Ferrer
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Corresponding author
Summary: Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an ∼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene.