Hemijska Industrija (Jan 2007)

Aerosol synthesis and characterization of nanostructured particles of Y3Al5O12:Ce3+ and Y2O3:Eu3+

  • Marinković Katarina R.,
  • Veselinović Ljiljana M.,
  • Gomez Luz S.,
  • Rabanal Maria E.,
  • Mančić Lidija,
  • Milošević Olivera B.

DOI
https://doi.org/10.2298/HEMIND0703101M
Journal volume & issue
Vol. 61, no. 3
pp. 101 – 108

Abstract

Read online

Nanostructured YAG:Ce3+ and Y2O3:Eu3+ were synthesized by low temperature (320°C) aerosol synthesis-LTAS and high temperature (900°C) aerosol synthesis-HTAS, respectively. The synthesis included aerosol generation from a nitrate precursor solution by an ultrasonic atomizer (1.3 MHz). The obtained aerosol was introduced into a tubular flow reactor, using air as the carrier gas, where successively, on a droplet level, evaporation/drying, precipitation and thermolysis occurred. The obtained powders were collected and thermally treated at different temperatures (900-1200°C). The phase development and the morphology were investigated by the X-ray powder diffraction method (XRPD) and scanning electron microscopy combined with energy dispersive spectrometry (SEM/EDS). Structural refinement was performed using the Rietveld method with the Fullprof and Koalariet programs. The average crystallite size for the Y2O3:Eu system was calculated using the Profit program. It was shown that 89 wt.% of Y3Ai5Oi2:Ce was obtained by annealing (1000°C/6 h) the as prepared, amorphous powder, synthesized by the low temperature aerosol method (LTAS). High temperature spray pyrolysis (HTAS) at 900°C led to the formation of the targeted cubic phase of Y2O3:Eu3+. The microstructural parameters of the asprepared samples of the Y2O3:Eu3+ system indicate the formation of nanostructures with crystallite size smallest than 20 nm. The substitution of luminescent centers (Ce3+, Eu3+) into a host lattice (YAG, Y2O3, respectively) was confirmed by changes in the crystal lattice parameters. Also, it was shown in both systems that good morphological characteristics (non-a­gglomerated, spherical, submicron particles) were obtained enabling improved luminescent characteristics.

Keywords