Antimicrobial Resistance and Infection Control (Jan 2019)

Using local clinical and microbiological data to develop an institution specific carbapenem-sparing strategy in sepsis: a nested case-control study

  • Merel M. C. Lambregts,
  • Bart J. C. Hendriks,
  • Leo G. Visser,
  • Sandra T. Bernards,
  • Mark G. J. de Boer

DOI
https://doi.org/10.1186/s13756-019-0465-y
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background From a stewardship perspective it is recommended that antibiotic guidelines are adjusted to the local setting, accounting for the local epidemiology of pathogens. In many settings the prevalence of Gram-negative pathogens with resistance to empiric sepsis therapy is increasing. How and when to escalate standard sepsis therapy to a reserve antimicrobial agent, is a recurrent dilemma. The study objective was to develop decision strategies for empiric sepsis therapy based on local microbiological and clinical data, and estimate the number needed to treat with a carbapenem to avoid mismatch of empiric therapy in one patient (NNTC). Methods We performed a nested case control study in patients (> 18 years) with Gram-negative bacteremia in 2013–2016. Cases were defined as patients with Gram-negative bacteremia with in vitro resistance to the combination 2nd generation cephalosporin AND aminoglycoside (C-2GC + AG). Control patients had Gram-negative bacteremia with in vitro susceptibility to cefuroxime AND/OR gentamicin, 1:2 ratio. Univariate and multivariable analysis was performed for demographic and clinical predictors of resistance. The adequacy rates of empiric therapy and the NNTC were estimated for different strategies. Results The cohort consisted of 486 episodes of Gram-negative bacteremia in 450 patients. Median age was 66 years (IQR 56–74). In vitro resistance to C-2GC + AG was present in 44 patients (8.8%). Independent predictors for resistance to empiric sepsis therapy were hematologic malignancy (adjusted OR 4.09, 95%CI 1.43–11.62, p < 0.01), previously cultured drug resistant pathogen (adjusted OR 3.72. 95%CI 1.72–8.03, p < 0.01) and antibiotic therapy during the preceding 2 months (adjusted OR 12.5 4.08–38.48, p < 0.01). With risk-based strategies, an adequacy rate of empiric therapy of 95.2–99.3% could be achieved. Compared to treating all patients with a carbapenem, the NNTC could be reduced by 82.8% (95%CI 78.5–87.5%) using the targeted approaches. Conclusions A risk-based approach in empiric sepsis therapy has the potential to better target the use of reserve antimicrobial agents aimed at multi-resistant Gram-negative pathogens. A structured evaluation of the expected antimicrobial consumption and antibiotic adequacy rates is essential to be able to weigh the costs and benefits of potential antibiotic strategies and select the most appropriate approach.

Keywords