Leaching Chalcopyrite with High MnO<sub>2</sub> and Chloride Concentrations
David Torres,
Luís Ayala,
Ricardo I. Jeldres,
Eduardo Cerecedo-Sáenz,
Eleazar Salinas-Rodríguez,
Pedro Robles,
Norman Toro
Affiliations
David Torres
Departamento de Ingeniería Metalúrgica y Minas, Universidad Católica del Norte, Antofagasta 1270709, Chile
Luís Ayala
Faculty of Engineering and Architecture, Universidad Arturo Prat, Almirante Juan José Latorre 2901, Antofagasta 1244260, Chile
Ricardo I. Jeldres
Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Antofagasta 1270300, Chile
Eduardo Cerecedo-Sáenz
Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca—Tulancingo km. 4.5, C.P. 42184, Mineral de la Reforma, Hidalgo C.P. 42184, Mexico
Eleazar Salinas-Rodríguez
Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca—Tulancingo km. 4.5, C.P. 42184, Mineral de la Reforma, Hidalgo C.P. 42184, Mexico
Pedro Robles
Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
Norman Toro
Departamento de Ingeniería Metalúrgica y Minas, Universidad Católica del Norte, Antofagasta 1270709, Chile
Most copper minerals are found as sulfides, with chalcopyrite being the most abundant. However; this ore is refractory to conventional hydrometallurgical methods, so it has been historically exploited through froth flotation, followed by smelting operations. This implies that the processing involves polluting activities, either by the formation of tailings dams and the emission of large amounts of SO2 into the atmosphere. Given the increasing environmental restrictions, it is necessary to consider new processing strategies, which are compatible with the environment, and, if feasible, combine the reuse of industrial waste. In the present research, the dissolution of pure chalcopyrite was studied considering the use of MnO2 and wastewater with a high chloride content. Fine particles (−20 µm) generated an increase in extraction of copper from the mineral. Besides, it was discovered that working at high temperatures (80 °C); the large concentrations of MnO2 become irrelevant. The biggest copper extractions of this work (71%) were achieved when operating at 80 °C; particle size of −47 + 38 µm, MnO2/CuFeS2 ratio of 5/1, and 1 mol/L of H2SO4.