IEEE Access (Jan 2019)

Optimized Low Density Superposition Modulation for 5G Mobile Multimedia Wireless Networks

  • Kun Lu,
  • Chengxin Jiang

DOI
https://doi.org/10.1109/ACCESS.2019.2957368
Journal volume & issue
Vol. 7
pp. 174227 – 174235

Abstract

Read online

The explosive growth of mobile multimedia services and applications are increasing the demand of access ability for the recent 5G networks. Non-orthogonal multiple access (NOMA) techniques have been recently proposed for 5G to improve access efficiency through allowing multiple users to share the same spectrum resources in a non-orthogonal way. Low Density Superposition Modulation (LDSM) is one of the NOMA techniques with potential to support high spectral efficiency and massive connectivity. In this paper, we utilize Bare-bone Particle Swarm Optimization (BBPSO) algorithm with extrinsic information transfer (EXIT) chart to design degree distribution of LDSM. An optimized design of LDSM scheme has better convergence performance compared with conventional sparse code multiple access (SCMA) and pattern division multiple access (PDMA) scheme over fading channel. Furthermore, the designed irregular LDSM can significantly improve the overall system performance and edge user performance under the near-far effect scenario. Simulation results validate that the proposed optimized LDSM can achieve about 1.0 dB gains compared to both SCMA and PDMA schemes.

Keywords