Heliyon (Oct 2022)

Salt-inducible kinase 1 deficiency promotes vascular remodeling in pulmonary arterial hypertension via enhancement of yes-associated protein-mediated proliferation

  • Jiangqin Pu,
  • Feng Wang,
  • Peng Ye,
  • Xiaomin Jiang,
  • Wenying Zhou,
  • Yue Gu,
  • Shaoliang Chen

Journal volume & issue
Vol. 8, no. 10
p. e11016

Abstract

Read online

Pulmonary arterial remodeling at an early stage, including excessive proliferation and migration of smooth muscle cells, is a hallmark of pulmonary arterial hypertension (PAH). Salt-inducible kinases (SIKs) have been increasingly reported to play a key role in smooth muscle cell proliferation and phenotype switching, which may be associated with arterial remodeling. However, the potential effects of SIK1 in PAH and the underlying mechanisms have not been explored. The aim of this study was to determine whether reduced expression or inactivation of SIK1 is associated with pulmonary arterial remodeling in PAH and to elucidate whether it is related to the Hippo/Yes-associated protein (YAP) pathway. Using mouse models of PAH and hypoxia-stimulated hPASMCs, we observed that SIK1 expression was robustly reduced in lung tissues of PAH mice and hPASMCs cultured under hypoxia. In hypoxia-induced PAH mice, pharmacological SIK inhibition or AAV9-mediated specific smooth muscle SIK1 knockdown strongly aggravated pathological changes caused by hypoxia, including right ventricular hypertrophy and small pulmonary arterial remodeling. Meanwhile, in hypoxia-stimulated hPASMCs, SIK1 knockdown or inhibition promoted proliferation and migration under hypoxia, accompanied by decreased phosphorylation and increased nuclear accumulation of YAP, while SIK1 overexpression inhibited hypoxia-induced proliferation, migration and nuclear translocation of YAP in hPASMCs. YAP knockdown attenuated the increase in cell proliferation induced by HG-9-91-01 treatment or SIK1 siRNA transfection under hypoxia in hPASMCs. Here, we identified SIK1 as an antiproliferative factor in hypoxia-induced pulmonary arterial remodeling via YAP-mediated mechanisms. These results show that targeting SIK1 may be a promising therapeutic strategy for the treatment of PAH.

Keywords