Plants (Feb 2022)
Understanding the Postharvest Phytochemical Composition Fates of Packaged Watercress (<i>Nasturtium officinale</i> R. Br.) Grown in a Floating System and Treated with <i>Bacillus subtilis</i> as PGPR
Abstract
The physiological changes and phytochemical pathways of processed watercress (Nasturtium officinale R. Br.) undergone during storage are not well known. The objective of this work was to evaluate the respiration rate and the inherent and external quality of watercress inoculated with B. subtilis and packaged as a fresh-cut product and stored at 4 °C for 11 days. Watercress was grown using continuous flotation (FL) in a greenhouse using substrate disinfection and inoculated or not with Bacillus subtilis as a plant-growth-promoting rhizobacteria (PGPR). The fresh-cut watercress respiration rate and phytochemical profile changed during the shelf life. The inherent phytochemical compounds were retained during the storage of the fresh-cut salad bags. The best results were found in watercress grown in a disinfected substrate but were less satisfactory when seeds and substrates were inoculated with PGPR. In general, the external quality and the pigment contents progressively decreased during the shelf life and the browning enzyme activities responsible for phenolic oxidation increased at different intensities throughout storage. At the end of the shelf-life period, the fresh weight loss of the fresh-cut product was less than 1% of the original weight. The results demonstrated that watercress grown in FL is a standardised baby leaf vegetable that is suitable for processing in the fresh-cut industry and for storing for more than 10 days. Unclear results were obtained for Bacillus subtilis in the postharvest period due to the inconsistent responses of the different analysed parameters.
Keywords