Photonics (Nov 2022)

Recent Applications of Antireflection Coatings in Solar Cells

  • Chunxue Ji,
  • Wen Liu,
  • Yidi Bao,
  • Xiaoling Chen,
  • Guiqiang Yang,
  • Bo Wei,
  • Fuhua Yang,
  • Xiaodong Wang

DOI
https://doi.org/10.3390/photonics9120906
Journal volume & issue
Vol. 9, no. 12
p. 906

Abstract

Read online

The antireflection coating (ARC) suppresses surface light loss and thus improves the power conversion efficiency (PCE) of solar cells, which is its essential function. This paper reviews the latest applications of antireflection optical thin films in different types of solar cells and summarizes the experimental data. Basic optical theories of designing antireflection coatings, commonly used antireflection materials, and their classic combinations are introduced. Since single and double antireflection coatings no longer meet the research needs in terms of antireflection effect and bandwidth, the current research mainly concentrates on multiple layer antireflection coatings, for example, adjusting the porosity or material components to achieve a better refractive index matching and the reflection effect. However, blindly stacking the antireflection films is unfeasible, and the stress superposition would allow the film layer to fail quickly. The gradient refractive index (GRIN) structure almost eliminates the interface, which significantly improves the adhesion and permeability efficiency. The high-low-high-low refractive index (HLHL) structure achieves considerable antireflection efficiency with fewer materials while selecting materials with opposite stress properties improves the ease of stress management. However, more sophisticated techniques are needed to prepare these two structures. Furthermore, using fewer materials to achieve a better antireflection effect and reduce the impact of stress on the coatings is a research hotspot worthy of attention.

Keywords