Journal of Materials Research and Technology (Nov 2022)

The effects of post-weld aging and cryogenic treatment on self-fusion welded austenitic stainless steel

  • Chen Cui,
  • Kaixuan Gu,
  • Yinan Qiu,
  • Zeju Weng,
  • Mingli Zhang,
  • Junjie Wang

Journal volume & issue
Vol. 21
pp. 648 – 661

Abstract

Read online

The effects of post-weld aging and cryogenic treatment on self-fusion welded austenitic stainless steel thick plates were investigated in the present work. The results showed that fusion zone microstructure consisted of austenite matrix and vermicular ferrite. Aging treatment promoted the decomposition of δ-ferrite into σ-ferrites as well as the precipitation of carbides. Isothermal martensitic transformation in the Tungsten Inert Gas Welding (TIG) specimen was induced by cryogenic treatment, and stacking faults were increased. The fusion zone microstructure of Electron Beam Welding (EBW) and Laser Welding (LW) was finer than that of TIG, with acicular ferrite distributed in the austenite matrix. A large number of twins were generated in the austenite matrix after LW. Cryogenic treatment produced a large number of sub-grains in LW specimens, which was due to the entanglement and accumulation of dislocations in the vicinity of ferrite. Post-weld aging and cryogenic treatment have no influence on the strength of weldments with different welding methods while cryogenic treatment could improve the impact toughness of EBW and LW weldments by the extent of 7.4% and 8.8%, respectively. The aging treatment reduced the impact toughness by 49%, 33% and 15.5%, as well as the uniform elongation by 44%, 39% and 17% for TIG, EBW and LW, respectively. Aging treatment reduced the surface residual stress of TIG weldment by 58.8% in Y direction and 61.2% in X direction. Cryogenic treatment at could also release the surface residual stress of TIG weldment by 36.8% in X direction and 16.3% in Y direction.

Keywords