Gut Microbes (Dec 2022)
Intestinal microbiota modulates pancreatic carcinogenesis through intratumoral natural killer cells
Abstract
Preclinical data demonstrate that the gut microbiota can promote pancreatic ductal adenocarcinoma (PDAC), but mechanisms remain unclear. We hypothesized that intestinal microbiota alters anti-tumor innate immunity response to facilitate PDAC progression. Human PDAC L3.6pl cells were heterotopically implanted into Rag1−/− mice after microbiota depletion with antibiotics, while syngeneic murine PDAC Pan02 cells were implanted intrapancreatic into germ-free (GF) C57BL/6 J mice. Natural killer (NK) cells and their IFNγ expression were quantitated by flow cytometry. NK cells were depleted in vivo using anti-Asialo GM1 antibody to confirm the role of NK cells. Bacteria-free supernatant from SPF and GF mice feces was used to test its effect on NK-92MI cell anti-tumor response in vitro. SPF and ex-GF mice (reconstituted with SPF microbiota) developed larger PDAC tumors with decreased NK cell tumor infiltration and IFNγ expression versus GF-Rag1−/−. Microbiota-induced PDAC tumorigenesis was attenuated by antibiotic exposure, a process reversed following NK cell depletion in both Rag1−/− and C57BL/6 J mice. Compared to GF, SPF-Rag1−/− abiotic stool culture supernatant inhibited NK-92MI cytotoxicity, migration, and anti-cancer related gene expression. Gut microbiota promotes PDAC tumor progression through modulation of the intratumoral infiltration and activity of NK cells.
Keywords