Polyolefins Journal (May 2024)

Homo- and co-polymerization of polar and non-polar olefinic monomers using bicenter cobalt-diimine catalysts

  • Majedeh Mroofi,
  • Gholamhossein Zohuri,
  • Saeid Ahmadjo,
  • Navid Ramezanian

DOI
https://doi.org/10.22063/poj.2024.3593.1300
Journal volume & issue
Vol. 11, no. 2
pp. 125 – 136

Abstract

Read online

Bicenter (BCn) cobalt-bis(imine) catalysts were synthesized, used to polymerize methyl methacrylate (MMA), and 1-hexene. The effect of catalyst structure, bridging ligand, and polymerization reaction conditions were investigated. Synthesis of primary ligand of (2,6-dibenzhydryl-4-ethoxyphenyl)-N=(CH3)-C(CH3)=O is prepared. Following to that, the final ligands of BC1 and BC2 bicenter catalysts were prepared via reacting the primary ligand with 2,3,5,6-tetramethylbenzene-1,4-diamine and 4,4-methylenedianiline bridges, respectively. The BC1 catalyst demonstrated higher activity than the BC2 catalyst. The highest activity for the BC1 catalyst was obtained when the co-catalyst to catalyst molar ratio was [Al]/[Co]=1500:1, and the polymerization temperature was 40 °C. In comparison the BC2 catalyst demonstrated the highest activity in [Al]/[Co]=500:1 ratio, polymerization temperature of 70 °Cand showed higher thermal stability. 1HNMR analysis revealed that the highest branching density for poly(methyl methacrylates) (PMMA) produced by BC1 and BC2 catalysts was 222 and 249 branches per 1000 carbon atoms, respectively. PMMA synthesized with BC2 catalysts had the highest syndiotacticity (59%). The polymer produced with bicenter catalyst (BC1) had a relatively broad molecular weight distribution (2.9), according to GPC analysis. The synthesized catalysts demonstrated appropriate activity for the polymerization of MMA, but only moderate activity for 1-hexene monomer

Keywords