APL Bioengineering (Mar 2024)

Osteogenically committed hUCMSCs-derived exosomes promote the recovery of critical-sized bone defects with enhanced osteogenic properties

  • Shuyi Li,
  • Qiong Rong,
  • Yang Zhou,
  • Yuejuan Che,
  • Ziming Ye,
  • Junfang Liu,
  • Jinheng Wang,
  • Miao Zhou

DOI
https://doi.org/10.1063/5.0159740
Journal volume & issue
Vol. 8, no. 1
pp. 016107 – 016107-14

Abstract

Read online

Low viability of seed cells and the concern about biosafety restrict the application of cell-based tissue-engineered bone (TEB). Exosomes that bear similar bioactivities to donor cells display strong stability and low immunogenicity. Human umbilical cord mesenchymal stem cells-derived exosomes (hUCMSCs-Exos) show therapeutic efficacy in various diseases. However, little is known whether hUCMSCs-Exos can be used to construct TEB to repair bone defects. Herein, PM-Exos and OM-Exos were separately harvested from hUCMSCs which were cultured in proliferation medium (PM) or osteogenic induction medium (OM). A series of in-vitro studies were performed to evaluate the bioactivities of human bone marrow mesenchymal stem cells (hBMSCs) when co-cultured with PM-Exos or OM-Exos. Differential microRNAs (miRNAs) between PM-Exos and OM-Exos were sequenced and analyzed. Furthermore, PM-Exos and OM-Exos were incorporated in 3D printed tricalcium phosphate scaffolds to build TEBs for the repair of critical-sized calvarial bone defects in rats. Results showed that PM-Exos and OM-Exos bore similar morphology and size. They expressed representative surface markers of exosomes and could be internalized by hBMSCs to promote cellular migration and proliferation. OM-Exos outweighed PM-Exos in accelerating the osteogenic differentiation of hBMSCs, which might be attributed to the differentially expressed miRNAs. Furthermore, OM-Exos sustainably released from the scaffolds, and the resultant TEB showed a better reparative outcome than that of the PM-Exos group. Our study found that exosomes isolated from osteogenically committed hUCMSCs prominently facilitated the osteogenic differentiation of hBMSCs. TEB grafts functionalized by OM-Exos bear a promising application potential for the repair of large bone defects.