PLoS ONE (Jan 2024)
Virulence, multiple drug resistance, and biofilm-formation in Salmonella species isolated from layer, broiler, and dual-purpose indigenous chickens.
Abstract
Globally, the significant risk to food safety and public health posed by antimicrobial-resistant foodborne Salmonella pathogens is driven by the utilization of in-feed antibiotics, with variations in usage across poultry production systems. The current study investigated the occurrence of virulence, antimicrobial resistant profiles, and biofilm-forming potentials of Salmonella isolates sourced from different chicken types. A total of 75 cloacal faecal samples were collected using sterile swabs from layer, broiler, and indigenous chickens across 15 poultry farms (five farms per chicken type). The samples were analysed for the presence of Salmonella spp. using species-specific PCR analysis. Out of the 150 presumptive isolates, a large proportion (82; 55%) were confirmed as Salmonella species, comprising the serovars S. typhimurium (49%) and S. enteritidis (30%) while 21% were uncategorised. Based on phenotypic antibiotic susceptibility test, the Salmonella isolates were most often resistant to erythromycin (62%), tetracycline (59%), and trimethoprim (32%). The dominant multiple antibiotic resistance phenotypes were SXT-W-TE (16%), E-W-TE (10%), AML-E-TE (10%), E-SXT-W-TE (13%), and AMP-AML-E-SXT-W-TE (10%). Genotypic assessment of antibiotic resistance genes revealed that isolates harboured the ant (52%), tet (A) (46%), sui1 (13%), sui2 (14%), and tet (B) (9%) determinants. Major virulence genes comprising the invasion gene spiC, the SPI-3 encoded protein (misL) that is associated with the establishment of chronic infections and host specificity as well as the SPI-4 encoded orfL that facilitates adhesion, autotransportation and colonisation were detected in 26%, 16%, and 14% of the isolates respectively. There was no significant difference on the proportion of Salmonella species and the occurrence of virulence and antimicrobial resistance determinants among Salmonella isolates obtained from different chicken types. In addition, neither the chicken type nor incubation temperature influenced the potential of the Salmonella isolates to form biofilms, although a large proportion (62%) exhibited weak to strong biofilm-forming potentials. Moderate to high proportions of antimicrobial resistant pathogenic Salmonella serovars were detected in the study but these did not vary with poultry production systems.