Lubricants (Sep 2024)

Electrification of a Mini Traction Machine and Initial Test Results

  • Peter Lee,
  • Carlos Sanchez,
  • Michael Moneer,
  • Andrew Velasquez

DOI
https://doi.org/10.3390/lubricants12100337
Journal volume & issue
Vol. 12, no. 10
p. 337

Abstract

Read online

Electric vehicles (EVs) continue to evolve, and sales continue to increase as the world pushes toward improved sustainability. This drives the need for research to understand the unique environments in which fluids operate within the Electric Drive Units (EDUs) of EVs in order to improve durability and reduce frictional losses. However, for this to happen, test rigs are required to operate with an electric current passing across the test parts and through the lubricant. Very few electrified test rigs currently exist, with most being adaptations of rigs undertaken by academia and independent and national research labs. In this work, the PCS Mini Traction Machine (MTM) was modified to supply a voltage across a tribological contact. New parts for the MTM were designed in collaboration with the instrument manufacturer. Work was undertaken in both the author’s labs and the manufacturer’s labs with the aim of bringing a commercially available unit to market as quickly as possible. A test matrix was completed on the MTM utilizing a range of temperatures, loads, and voltage inputs for three different lubricants commonly used in EDUs. The test matrix consisted of 36 test conditions, with some runs performed in triplicate, resulting in 81 tests for each oil and a total matrix of 243 tests. The test matrix was run to obtain the results and to test the robustness of the rig design. After testing was completed, the MTM disc wear scars were measured. The results from these measurements indicate that the application of alternating current (AC) and direct current (DC) causes a significant increase in the wear scar compared to non-electrified test conditions. This, in turn, results in increased traction values under non-electrified conditions. It was also noted that the repeatability of the traction curves and end-of-test wear was reduced under both AC and DC electrified conditions.

Keywords