Poultry Science (Sep 2022)

Rubber (Hevea brasiliensis) seed oil supplementation attenuates immunological stress and inflammatory response in lipopolysaccharide-challenged laying hens

  • Jing Liu,
  • Lulu Zhao,
  • Zitao Zhao,
  • Yongbao Wu,
  • Junting Cao,
  • Hongying Cai,
  • Peilong Yang,
  • Zhiguo Wen

Journal volume & issue
Vol. 101, no. 9
p. 102040

Abstract

Read online

ABSTRACT: This study was conducted to investigate the effect of PUFA-enriched rubber (Hevea brasiliensis) seed oil (RSO) supplementation in diets on the productive performance, plasma biochemical parameters, immune response, and inflammation in lipopolysaccharide (LPS)-challenged laying hens. Two hundred and forty 25-wk-old Lohmann Brown laying hens were randomly divided into 5 treatments, each including 4 replicates with 12 birds per replicate. The control group and LPS-challenged group were fed a corn-soybean-basal diet; 3 RSO-supplemented groups were fed experimental diets containing 1, 2, and 4% RSO for a feeding period of 4 wk. On the 15, 18, 21, 24, and 27 d of the RSO supplementation period of 4 wk, hens were injected intraperitoneally with LPS at 1 mg/kg body weight (challenge group and RSO-supplemented groups) or with the same amount of saline (control group). The results showed that the addition of RSO promoted laying performance by increasing egg production, total egg weight, daily egg mass, and feed intake in comparison to the LPS-challenged laying hens (P < 0.05). In addition, compared with laying hens stimulated with LPS, the analysis of blood cell and plasma parameters revealed that hens in RSO-supplemented groups had significantly lower levels (P < 0.05) of white blood cells (WBC), lymphocytes (LYM), aspartate aminotransferase (AST) activity, immunoglobulin A (IgA), triiodothyronine (T3), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α). Further, RSO supplementation significantly reduced the mRNA expression of toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin-6 (IL-6), and interleukin-1β (IL-1β) of the ileum, spleen, and liver in LPS-challenged laying hens (P < 0.05), suggesting that the anti-inflammatory mechanism of RSO is related to the TLR4/NF-κB signaling pathway. In conclusion, RSO supplementation in diets could improve laying performance, attenuate immunological stress, and inhibit the inflammatory response in LPS-challenged laying hens, especially at the dietary inclusion of 4% RSO. This study will provide an insight into the application of RSO to positively contribute to overall health and welfare in laying hens.

Keywords