Scientific Reports (Aug 2023)
Formalizing psychological interventions through network control theory
Abstract
Abstract Despite the growing deployment of network representation to comprehend psychological phenomena, the question of whether and how networks can effectively describe the effects of psychological interventions remains elusive. Network control theory, the engineering study of networked interventions, has recently emerged as a viable methodology to characterize and guide interventions. However, there is a scarcity of empirical studies testing the extent to which it can be useful within a psychological context. In this paper, we investigate a representative psychological intervention experiment, use network control theory to model the intervention and predict its effect. Using this data, we showed that: (1) the observed psychological effect, in terms of sensitivity and specificity, relates to the regional network control theoretic metrics (average and modal controllability), (2) the size of change following intervention negatively correlates with a whole-network topology that quantifies the “ease” of change as described by control theory (control energy), and (3) responses after intervention can be predicted based on formal results from control theory. These insights assert that network control theory has significant potential as a tool for investigating psychological interventions. Drawing on this specific example and the overarching framework of network control theory, we further elaborate on the conceptualization of psychological interventions, methodological considerations, and future directions in this burgeoning field.