npj Science of Learning (Jul 2022)

Redesigning navigational aids using virtual global landmarks to improve spatial knowledge retrieval

  • Jia Liu,
  • Avinash Kumar Singh,
  • Anna Wunderlich,
  • Klaus Gramann,
  • Chin-Teng Lin

DOI
https://doi.org/10.1038/s41539-022-00132-z
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Although beacon- and map-based spatial strategies are the default strategies for navigation activities, today’s navigational aids mostly follow a beacon-based design where one is provided with turn-by-turn instructions. Recent research, however, shows that our reliance on these navigational aids is causing a decline in our spatial skills. We are processing less of our surrounding environment and relying too heavily on the instructions given. To reverse this decline, we need to engage more in map-based learning, which encourages the user to process and integrate spatial knowledge into a cognitive map built to benefit flexible and independent spatial navigation behaviour. In an attempt to curb our loss of skills, we proposed a navigation assistant to support map-based learning during active navigation. Called the virtual global landmark (VGL) system, this augmented reality (AR) system is based on the kinds of techniques used in traditional orienteering. Specifically, a notable landmark is always present in the user’s sight, allowing the user to continuously compute where they are in relation to that specific location. The efficacy of the unit as a navigational aid was tested in an experiment with 27 students from the University of Technology Sydney via a comparison of brain dynamics and behaviour. From an analysis of behaviour and event-related spectral perturbation, we found that participants were encouraged to process more spatial information with a map-based strategy where a silhouette of the compass-like landmark was perpetually in view. As a result of this technique, they consistently navigated with greater efficiency and better accuracy.