Nanotechnology based on nanoscale materials is rapidly being used in clinical settings, particularly as a new approach for infectious illnesses. Recently, many physical/chemical approaches utilized to produce nanoparticles are expensive and highly unsafe to biological species and ecosystems. This study demonstrated an environmentally friendly mode of producing nanoparticles (NPs) where Fusarium oxysporum has been employed for generation of silver nanoparticles (AgNPs), which were further tested for their antimicrobial potentials against a variety of pathogenic microorganisms. The characterization of NPs was completed by UV–Vis spectroscopy, DLS and TEM, where it has been found that the NPs were mostly globular, with the size range of 50 to 100 nm. The myco-synthesized AgNPs showed prominent antibacterial potency observed as zone of inhibition of 2.6 mm, 1.8 mm, 1.5 mm, and 1.8 mm against Vibrio cholerae, Streptococcus pneumoniae, Klebsiella pneumoniae and Bacillus anthracis, respectively, at 100 µM. Similarly, at 200 µM for A. alternata, A. flavus and Trichoderma have shown zone of inhibition as 2.6 mm, 2.4 mm, and 2.1 mm, respectively. Moreover, SEM analysis of A. alternata confirmed the hyphal damage where the layers of membranes were torn off, and further EDX data analysis showed the presence of silver NPs, which might be responsible for hyphal damage. The potency of NPs may be related with the capping of fungal proteins that are produced extracellularly. Thus, these AgNPs may be used against pathogenic microbes and play a beneficial role against multi-drug resistance.