Sensors (Nov 2023)
Three-Dimensional Segmentation Assisted with Clustering Analysis for Surface and Volume Measurements of Equine Incisor in Multidetector Computed Tomography Data Sets
Abstract
Dental diagnostic imaging has progressed towards the use of advanced technologies such as 3D image processing. Since multidetector computed tomography (CT) is widely available in equine clinics, CT-based anatomical 3D models, segmentations, and measurements have become clinically applicable. This study aimed to use a 3D segmentation of CT images and volumetric measurements to investigate differences in the surface area and volume of equine incisors. The 3D Slicer was used to segment single incisors of 50 horses’ heads and to extract volumetric features. Axial vertical symmetry, but not horizontal, of the incisors was evidenced. The surface area and volume differed significantly between temporary and permanent incisors, allowing for easy eruption-related clustering of the CT-based 3D images with an accuracy of >0.75. The volumetric features differed partially between center, intermediate, and corner incisors, allowing for moderate location-related clustering with an accuracy of >0.69. The volumetric features of mandibular incisors’ equine odontoclastic tooth resorption and hypercementosis (EOTRH) degrees were more than those for maxillary incisors; thus, the accuracy of EOTRH degree-related clustering was >0.72 for the mandibula and >0.33 for the maxilla. The CT-based 3D images of equine incisors can be successfully segmented using the routinely achieved multidetector CT data sets and the proposed data-processing approaches.
Keywords