Aerospace (Jun 2023)
A Tether System at the <i>L</i><sub>1</sub>, <i>L</i><sub>2</sub> Collinear Libration Points of the Mars–Phobos System: Analytical Solutions
Abstract
This paper is dedicated to identifying stable equilibrium positions of the tether systems attached to the L1 or L2 libration points of the Mars–Phobos system. The orbiting spacecraft deploying the tether is at the L1 or L2 libration point and is held at one of these unstable points by the low thrust of its engines. In this paper, the analysis is performed assuming that the tether length is constant. The equation of motion for the system in the polar reference frame is obtained. The stable equilibrium positions are found and the dependence of the tether angular oscillation period on the tether length is determined. An analytical solution in the vicinity of the stable equilibrium positions for small angles of deflection of the tether from the local vertical is obtained in Jacobi elliptic functions. The comparison of the numerical and analytical solutions for small angles of deflection is performed. The results show that the dependencies of the oscillation period on the length of the tether are fundamentally different for L1 and L2 points. Analytical expressions for the tether tension are derived, and the influence of system parameters on this force is investigated for static and dynamic cases.
Keywords