Fundación Instituto Leloir, Buenos Aires, Argentina; Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aries, Argentina
Sebastián Perez-Pandolfo
Fundación Instituto Leloir, Buenos Aires, Argentina; Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aries, Argentina
Sabrina Micaela Fresco
Fundación Instituto Leloir, Buenos Aires, Argentina
Julián Valinoti
Fundación Instituto Leloir, Buenos Aires, Argentina
Eleonora Sorianello
Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aries, Argentina; Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
Fundación Instituto Leloir, Buenos Aires, Argentina; Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aries, Argentina; Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
Fundación Instituto Leloir, Buenos Aires, Argentina; Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aries, Argentina; Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.