BMC Genomics (Mar 2021)

Unveiling the long non-coding RNA profile of porcine reproductive and respiratory syndrome virus-infected porcine alveolar macrophages

  • Junxin Gao,
  • Yu Pan,
  • Yunfei Xu,
  • Wenli Zhang,
  • Lin Zhang,
  • Xi Li,
  • Zhijun Tian,
  • Hongyan Chen,
  • Yue Wang

DOI
https://doi.org/10.1186/s12864-021-07482-9
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Long noncoding RNA (lncRNA) is highly associated with inflammatory response and virus-induced interferon production. By far the majority of studies have focused on the immune-related lncRNAs of mice and humans, but the function of lncRNAs in porcine immune cells are poorly understood. Porcine reproductive and respiratory syndrome virus (PRRSV) impairs local immune responses in the lungs of nursery and growing pigs, whereas the virus triggers the inflammatory responses. Porcine alveolar macrophage (PAM) is the primary target cell of PRRSV, thus PRRSV is used as an in vitro model of inflammation. Here, we profiled lncRNA and mRNA repertories from PRRSV-infected PAMs to explore the underlying mechanism of porcine lncRNAs in regulating host immune responses. Results In this study, a total of 350 annotated lncRNAs and 1792 novel lncRNAs in PAMs were identified through RNA-seq analysis. Among them 86 differentially expressed (DE) lncRNAs and 406 DE protein-coding mRNAs were identified upon PRRSV incubation. GO category and KEGG pathway enrichment analyses revealed that these DE lncRNAs and mRNAs were mainly involved in inflammation- and pathogen infection-induced pathways. The results of dynamic correlated expression networks between lncRNAs and their predicted target genes uncovered that numerous lncRNAs, such as XLOC-022175, XLOC-019295, and XLOC-017089, were correlated with innate immune genes. Further analysis validated that these three lncRNAs were positively correlated with their predicted target genes including CXCL2, IFI6, and CD163. This study suggests that porcine lncRNAs affect immune responses against PRRSV infection through regulating their target genes in PAMs. Conclusion This study provides both transcriptomic and epigenetic status of porcine macrophages. In response to PRRSV infection, comprehensive DE lncRNAs and mRNAs were profiled from PAMs. Co-expression analysis demonstrated that lncRNAs are emerging as the important modulators of immune gene activities through their critical influence upon PRRSV infection in porcine macrophages.

Keywords