IEEE Open Journal of Power Electronics (Jan 2024)
Design of a 2.5 kW Four-Level Interleaved Flying Capacitor Multilevel Totem-Pole PFC Converter With AC-Side Passive Volume Optimization
Abstract
In this article, a high-efficiency and high-density 2.5 kW four-level interleaved flying capacitor multilevel (FCML) totem-pole bridgeless power-factor-correction (PFC) rectifier with 200 V GaN devices is analyzed, designed, and tested. This 2.5 kW four-level continuous conduction mode (CCM) GaN totem pole PFC operates with three times inductor current ripple frequency than that of the switching frequency which significantly reduces the size of the inductors while also supporting switching loss reduction. This article compares the loss of the two-level CCM GaN totem-pole PFC, four-level non-interleaved FCML PFC and interleaved four-level FCML PFC with the same ripple frequency (300 kHz) and shows that the interleaved four-level CCM GaN PFC has much less device loss. In addition, this article discusses the detailed EMI spectrum analysis and derivation of the mathematical model for determining the attenuation requirement of the four-level interleaved FCML PFC converter followed by volumetric co-optimization of AC-side passives i.e., the boost inductor and differential mode (DM) EMI filter. A 2.5 kW four-level interleaved FCML GaN totem-pole PFC prototype with an optimized 94 kHz switching frequency is developed and tested in this article. The converter exhibits a peak efficiency of 99.14% with system power density reaching 89.47 W/inch3.
Keywords