Applied Sciences (Aug 2024)

Optimizing the Influence of Fly Ash as an Anti-Sagging Additive in Highly Deviated Geothermal Well Drilling Fluids Using Surface Response Method

  • Opeyemi Oni,
  • Adesina Fadairo

DOI
https://doi.org/10.3390/app14156833
Journal volume & issue
Vol. 14, no. 15
p. 6833

Abstract

Read online

Weighting materials such as barite and ilmenite are crucial for controlling fluid density during deep or ultra-deep drilling operations. However, sagging poses significant challenges, especially in highly deviated high-pressure and high-temperature (HP/HT) wells. This leads to inadequate well control, wellbore instability, and variations in hydrostatic pressure in extended-reach wells. Given the challenges of experimental research, reliable prediction models are imperative for evaluating the interaction between the ratio of anti-sagging additives, temperature, and wellbore inclination on sag factor (SF). This research presents statistical-based empirical models for predicting the SF at various wellbore inclinations (0°, 30°, 45°, 60°, 70°, 80°, and 90°) and assessing the influence of fly ash on the SF. The regression equations, developed using the Response Surface Methodology in Minitab 18 software, show high reliability, with R2 values approaching unity. Contour and surface response plots provide a clear understanding of the variable interactions. The analysis reveals that sagging is most severe at 60° to 65° inclination. At 400 °F and 60° inclination, adding 4 lb/bbl of fly ash reduces sagging in barite and ilmenite-densified fluid by 63.9% and 63.1%, respectively. Model validation shows high accuracy, with percentage errors below 3%. This study offers valuable insights for optimizing drilling fluid formulations in HP/HT well environments.

Keywords