Frontiers in Plant Science (Mar 2022)

Melatonin Induced Cold Tolerance in Plants: Physiological and Molecular Responses

  • Sameer H. Qari,
  • Muhammad Umair Hassan,
  • Muhammad Umer Chattha,
  • Athar Mahmood,
  • Maria Naqve,
  • Muhammad Nawaz,
  • Lorenzo Barbanti,
  • Maryam A. Alahdal,
  • Maha Aljabri,
  • Maha Aljabri

DOI
https://doi.org/10.3389/fpls.2022.843071
Journal volume & issue
Vol. 13

Abstract

Read online

Cold stress is one of the most limiting factors for plant growth and development. Cold stress adversely affects plant physiology, molecular and biochemical processes by determining oxidative stress, poor nutrient and water uptake, disorganization of cellular membranes and reduced photosynthetic efficiency. Therefore, to recover impaired plant functions under cold stress, the application of bio-stimulants can be considered a suitable approach. Melatonin (MT) is a critical bio-stimulant that has often shown to enhance plant performance under cold stress. Melatonin application improved plant growth and tolerance to cold stress by maintaining membrane integrity, plant water content, stomatal opening, photosynthetic efficiency, nutrient and water uptake, redox homeostasis, accumulation of osmolytes, hormones and secondary metabolites, and the scavenging of reactive oxygen species (ROS) through improved antioxidant activities and increase in expression of stress-responsive genes. Thus, it is essential to understand the mechanisms of MT induced cold tolerance and identify the diverse research gaps necessitating to be addressed in future research programs. This review discusses MT involvement in the control of various physiological and molecular responses for inducing cold tolerance. We also shed light on engineering MT biosynthesis for improving the cold tolerance in plants. Moreover, we highlighted areas where future research is needed to make MT a vital antioxidant conferring cold tolerance to plants.

Keywords