Scientific Reports (Apr 2023)
Characterizing quantum circuits with qubit functional configurations
Abstract
Abstract We develop a systematic framework for characterizing all quantum circuits with qubit functional configurations. The qubit functional configuration is a mathematical structure that can classify the properties and behaviors of quantum circuits collectively. Major benefits of classifying quantum circuits in this way include: 1. All quantum circuits can be classified into corresponding types; 2. Each type characterizes important properties (such as circuit complexity) of the quantum circuits belonging to it; 3. Each type contains a huge collection of possible quantum circuits allowing systematic investigation of their common properties. We demonstrate the theory’s application to analyzing the hardware-efficient ansatzes of variational quantum algorithms. For potential applications, the functional configuration theory may allow systematic understanding and development of quantum algorithms based on their functional configuration types.