Revista Facultad de Ingeniería Universidad de Antioquia (Jan 2010)
On classification improvement by using an approximate discriminative hidden Markov model
Abstract
Los modelos ocultos de Markov (HMM) son modelos estadísticos usados de forma efectiva en procesamiento del habla. Aunque, siendo orientado al análisis de procesos estocásticos puede ser aplicado a una alta variedad de tareas relacionadas con el proceso e identificación con señales biomédicas. Tradicionalmente, los parámetros HMM son estimados bajo el criterio de máxima verosimilitud (entrenamiento generativo). Sin embargo, la estimación en este caso tiene como desventaja que la distribución que se quiere ajustar es la distribución de cada clase, y además los modelos y/o datos de otras clases no participan en la re-estimación de los parámetros, como consecuencia, el criterio MLE (Maximum Likelihood Estimation) no esta relacionado directamente con el objetivo de reducción de la tasa de error, lo que ha llevado a muchos investigadores a optar por técnicas de entrenamiento conocidas como entrenamiento discriminativo, en el que se encuentra la estimación de máxima información mutua. Este trabajo se realiza una comparación entre las técnicas de entrenamiento generativo y discriminativo para casos concretos de detección de patologías en señales de voz, fonocardiografía y electroencefalografía. Los resultados obtenidos muestran un mejor desempeño de la técnica discriminativa sobre la generativa en todas las bases de datos usadas.