PLoS ONE (Jan 2014)

Most human proteins made in both nucleus and cytoplasm turn over within minutes.

  • Sabyasachi Baboo,
  • Bhaskar Bhushan,
  • Haibo Jiang,
  • Chris R M Grovenor,
  • Philippe Pierre,
  • Benjamin G Davis,
  • Peter R Cook

DOI
https://doi.org/10.1371/journal.pone.0099346
Journal volume & issue
Vol. 9, no. 6
p. e99346

Abstract

Read online

In bacteria, protein synthesis can be coupled to transcription, but in eukaryotes it is believed to occur solely in the cytoplasm. Using pulses as short as 5 s, we find that three analogues--L-azidohomoalanine, puromycin (detected after attaching fluors using 'click' chemistry or immuno-labeling), and amino acids tagged with 'heavy' 15N and 13C (detected using secondary ion mass spectrometry)--are incorporated into the nucleus and cytoplasm in a process sensitive to translational inhibitors. The nuclear incorporation represents a significant fraction of the total, and labels in both compartments have half-lives of less than a minute; results are consistent with most newly-made peptides being destroyed soon after they are made. As nascent RNA bearing a premature termination codon (detected by fluorescence in situ hybridization) is also eliminated by a mechanism sensitive to a translational inhibitor, the nuclear turnover of peptides is probably a by-product of proof-reading the RNA for stop codons (a process known as nonsense-mediated decay). We speculate that the apparently-wasteful turnover of this previously-hidden ('dark-matter') world of peptide is involved in regulating protein production.